JavaRush /Java Blogu /Random-AZ /Java-da "Sehrli Meydan" yaratmaq

Java-da "Sehrli Meydan" yaratmaq

Qrupda dərc edilmişdir
N nizamlı sehrli kvadrat 1, 2, 3, ..., n^2 ədədlərindən ibarət nxn ölçülü kvadrat matrisadır ki, hər bir sütun, hər sətir və iki böyük diaqonalın hər biri üçün cəmlər bərabər olsun. . Yadıma düşən ilk şey Sudoku oldu :) Başa düşməyənlər üçün Java-da "Sehrli kvadrat" yaratmaq - 1Vikipediyadan link . Öz doldurma alqoritmlərimi yaratmağı sınaqdan keçirdikdən sonra başqa insanların köməyi olmadan bunu edə bilməyəcəyim qənaətinə gəldim. Buna görə də, onlarla keçiddən keçdikdən sonra ümumilikdə “n” ölçüsünün istənilən matrisinin doldurulmasını həyata keçirən 3 alqoritm tətbiq etdim. Kodun əvvəlində aşağıda istifadə olunacaq üsullarla bağlı şərhləri tapa bilərsiniz. Alqoritmlərə və digər (faydalı?) şərhlərə keçidlər müvafiq metodların mətnində tapıla bilər. Mən Telegramdayam: @sergey3ts Və Linkedin, əlbəttə (Özünüzü əlavə edin, bu mənim üçün vacibdir :)
// magicSquareOfOddOrder(int n);       метод для n нечетной размерности (3, 7, 9, и тд)
 // magicSquareOfEvenOddOrder(int n);   метод для n четно-нечетной размерности (n кратно 2 но не крастно 4)
 // magicSquareOfEvenOddOrder(int n);   метод для n четн-четной размерности (n кратно и 2 и 4);
 // magicSquare(int n);                 общий метод, который определяет кратность n и вызывает соотв. метод

 // Вспомогательные методы
 // standardMatrixFillingAscending(n); заполняет матрицу от 1 по возростанию
 // standardMatrixFillingDescending(n); заполняет матрицу от n*n по убыванию

 // Извиняюсь за косяки в codeе (непонятные переменные(возможно(нет(да)))) :)
public class MatrixSolution16 {
    public static void main(String[] args) {
        magicSquare(6);
    }
   public static int [][] magicSquare(int n) {
        if (n % 2 !=0) return magicSquareOfOddOrder(n);             // метод для n нечетной размерности (3, 7, 9, и тд)
        else if (n % 4 != 0) return magicSquareOfEvenOddOrder(n);   // метод для n четно-нечетной размерности (n кратно 2 но не кратно 4)
        return magicSquareOfEvenOddOrder(n);                        // метод для n четн-четной размерности (n кратно и 2 и 4);
    }
   private static int[][] magicSquareOfOddOrder(int n) {
        // "Сиамский метод" - один из самых просты для восприятия
        // https://ru.xcv.wiki/wiki/Siamese_method
        // Оставлю без комментариев (gif по ссылке наглядно показывает How он работает)
        // code не сложный
        int[][] matrix = new int[n][n];
        for (int i = 0; i < n; i++) {
            Arrays.fill(matrix[i], 0);
        }
        int count = 1, y = 0, x = matrix.length/2;
        while (true){
            matrix[y][x] = count;

            count++;
            if (((y == 0) && (x >= n-1)) && (matrix[n-1][0] != 0)){
                y++;
            }
            else {
                y--;
                if (y < 0) {
                    y = n - 1;
                }
                x++;
                if (x == n) {
                    x = 0;
                }
                if(matrix[y][x]!=0){
                    y+=2;
                    x--;
                }
            }

            if(count==n*n+1) break;
        }
        return matrix;
    }
   private static int[][] magicSquareOfEvenOddOrder(int n) {
        // Метод "анонима" спасибо человеку, который его придумал
        // Вот link на подробное описание метода http://www.klassikpoez.narod.ru/mojmetod.htm
        // Оставлю этот code без комментариев уж очень он большой
        // Надеюсь прочитав описание метода сможете понять(or нет?)
        int half = n/2;

        int[][] matrix = new int[n][n];
        int[][] tempMatrix;
        tempMatrix = magicSquareOfOddOrder(half);

        // 1/4 матрицы
        for (int i = 0; i < half; i++) {
            for (int j = 0; j < half; j++) {
                matrix[i][j] = tempMatrix[i][j];
            }
        }
        // 2/4 матрицы
        for (int i = 0; i < half; i++) {
            for (int j = half; j < n; j++) {
                int x = j-half;
                matrix[i][j] = (tempMatrix[i][x]+2*half*half);
            }
        }
        // 3/4 матрицы
        for (int i = half; i < n; i++) {
            for (int j = 0; j < half; j++) {
                int x = i-half;

                matrix[i][j] = (tempMatrix[x][j]+3*half*half);
            }
        }
        // 4/4 матрицы
        for (int i = half; i < n; i++) {
            for (int j = half; j < n; j++) {
                int x = i-half, y = j-half;
                matrix[i][j] = (tempMatrix[x][y]+half*half);
            }
        }
        int move = 0;
        for (int i = 6; i < n; i++) {
            if((i%4!=0)&&(i%2==0)) move++;
        }
        for (int j = matrix.length/2-move; j <= matrix.length/2+move-1; j++) {
            for (int i = 0; i < tempMatrix.length; i++) {

                int key = matrix[i][j];
                matrix[i][j] = matrix[half+i][j];
                matrix[half+i][j] = key;
            }
        }
        for (int j = 0; j <= 1; j++) {
            if (j == 0) {
                int key = matrix[0][0];
                matrix[0][0] = matrix[half][0];
                matrix[half][0] = key;
            }
            if (j == 1) {
                int key = matrix[half - 1][0];
                matrix[half - 1][0] = matrix[n - 1][0];
                matrix[n - 1][0] = key;
            }
        }
        for (int j = half+1; j < n-1; j++) {
            for (int i = 1; i < half-1; i++) {
                int key = matrix[i][1];
                matrix[i][1] = matrix[half+i][1];
                matrix[half+i][1] = key;
            }
        }
        return matrix;
    }
    private static int[][] evenMatrixSquare(int n){
        // Метод Раус-Болла хорошое описание нашел тут:
        // https://rep.bntu.by/bitstream/handle/data/62327/Magicheskie_kvadraty.pdf?sequence=1&isAllowed=y
        // Страница 8, 9
        int[][] matrix = WorkWithMatrix.standardMatrixFillingAscending(n);
        int[][] tempMatrix = WorkWithMatrix.standardMatrixFillingDescending(n);

        int size = 4;    // Размерность каждого квадрата (4х4 тафтология)
                         // можно заменить простой цифрой
        int x = 0;       // x, y - движение по кадратам (посмотрите How изменяются в ходе программы)
        int y = 0;
        for (int i = 0; i < (n*n/16); i++) {                // Смотрим сколько квадратов 4х4 помещается в матрице nxn
            if (x == (int)Math.sqrt(n*n/16)) {              // x, y переменные для движения по квадратам 4х4
                                                            // х проходит по первому ряду квадратов, достигая последнего
                                                            // обнуляется, а y увеличивается
                x = 0;
                y++;
            }
            // x и y должны лишь обеспечивать проход по квадратам
            for (int j = 0; j < 4; j++) {
                matrix[size*y+j][size*x+j] = tempMatrix[size*y+j][size*x+j];  // главная диагональ квадратов 4х4
                matrix[size*y+j][size*x+size-1-j] = tempMatrix[size*y+j][size*x+size-1-j]; // побочная диагональ
            }
            x++;
        }
        return matrix;
    }
}
Şərhlər
TO VIEW ALL COMMENTS OR TO MAKE A COMMENT,
GO TO FULL VERSION