// magicSquareOfOddOrder(int n); метод для n нечетной размерности (3, 7, 9, и тд)
// magicSquareOfEvenOddOrder(int n); метод для n четно-нечетной размерности (n кратно 2 но не крастно 4)
// magicSquareOfEvenOddOrder(int n); метод для n четн-четной размерности (n кратно и 2 и 4);
// magicSquare(int n); общий метод, который определяет кратность n и вызывает соотв. метод
// Вспомогательные методы
// standardMatrixFillingAscending(n); заполняет матрицу от 1 по возростанию
// standardMatrixFillingDescending(n); заполняет матрицу от n*n по убыванию
// Извиняюсь за косяки в codeе (непонятные переменные(возможно(нет(да)))) :)
public class MatrixSolution16 {
public static void main(String[] args) {
magicSquare(6);
}
public static int [][] magicSquare(int n) {
if (n % 2 !=0) return magicSquareOfOddOrder(n); // метод для n нечетной размерности (3, 7, 9, и тд)
else if (n % 4 != 0) return magicSquareOfEvenOddOrder(n); // метод для n четно-нечетной размерности (n кратно 2 но не кратно 4)
return magicSquareOfEvenOddOrder(n); // метод для n четн-четной размерности (n кратно и 2 и 4);
}
private static int[][] magicSquareOfOddOrder(int n) {
// "Сиамский метод" - один из самых просты для восприятия
// https://ru.xcv.wiki/wiki/Siamese_method
// Оставлю без комментариев (gif по ссылке наглядно показывает How он работает)
// code не сложный
int[][] matrix = new int[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(matrix[i], 0);
}
int count = 1, y = 0, x = matrix.length/2;
while (true){
matrix[y][x] = count;
count++;
if (((y == 0) && (x >= n-1)) && (matrix[n-1][0] != 0)){
y++;
}
else {
y--;
if (y < 0) {
y = n - 1;
}
x++;
if (x == n) {
x = 0;
}
if(matrix[y][x]!=0){
y+=2;
x--;
}
}
if(count==n*n+1) break;
}
return matrix;
}
private static int[][] magicSquareOfEvenOddOrder(int n) {
// Метод "анонима" спасибо человеку, который его придумал
// Вот link на подробное описание метода http://www.klassikpoez.narod.ru/mojmetod.htm
// Оставлю этот code без комментариев уж очень он большой
// Надеюсь прочитав описание метода сможете понять(or нет?)
int half = n/2;
int[][] matrix = new int[n][n];
int[][] tempMatrix;
tempMatrix = magicSquareOfOddOrder(half);
// 1/4 матрицы
for (int i = 0; i < half; i++) {
for (int j = 0; j < half; j++) {
matrix[i][j] = tempMatrix[i][j];
}
}
// 2/4 матрицы
for (int i = 0; i < half; i++) {
for (int j = half; j < n; j++) {
int x = j-half;
matrix[i][j] = (tempMatrix[i][x]+2*half*half);
}
}
// 3/4 матрицы
for (int i = half; i < n; i++) {
for (int j = 0; j < half; j++) {
int x = i-half;
matrix[i][j] = (tempMatrix[x][j]+3*half*half);
}
}
// 4/4 матрицы
for (int i = half; i < n; i++) {
for (int j = half; j < n; j++) {
int x = i-half, y = j-half;
matrix[i][j] = (tempMatrix[x][y]+half*half);
}
}
int move = 0;
for (int i = 6; i < n; i++) {
if((i%4!=0)&&(i%2==0)) move++;
}
for (int j = matrix.length/2-move; j <= matrix.length/2+move-1; j++) {
for (int i = 0; i < tempMatrix.length; i++) {
int key = matrix[i][j];
matrix[i][j] = matrix[half+i][j];
matrix[half+i][j] = key;
}
}
for (int j = 0; j <= 1; j++) {
if (j == 0) {
int key = matrix[0][0];
matrix[0][0] = matrix[half][0];
matrix[half][0] = key;
}
if (j == 1) {
int key = matrix[half - 1][0];
matrix[half - 1][0] = matrix[n - 1][0];
matrix[n - 1][0] = key;
}
}
for (int j = half+1; j < n-1; j++) {
for (int i = 1; i < half-1; i++) {
int key = matrix[i][1];
matrix[i][1] = matrix[half+i][1];
matrix[half+i][1] = key;
}
}
return matrix;
}
private static int[][] evenMatrixSquare(int n){
// Метод Раус-Болла хорошое описание нашел тут:
// https://rep.bntu.by/bitstream/handle/data/62327/Magicheskie_kvadraty.pdf?sequence=1&isAllowed=y
// Страница 8, 9
int[][] matrix = WorkWithMatrix.standardMatrixFillingAscending(n);
int[][] tempMatrix = WorkWithMatrix.standardMatrixFillingDescending(n);
int size = 4; // Размерность каждого квадрата (4х4 тафтология)
// можно заменить простой цифрой
int x = 0; // x, y - движение по кадратам (посмотрите How изменяются в ходе программы)
int y = 0;
for (int i = 0; i < (n*n/16); i++) { // Смотрим сколько квадратов 4х4 помещается в матрице nxn
if (x == (int)Math.sqrt(n*n/16)) { // x, y переменные для движения по квадратам 4х4
// х проходит по первому ряду квадратов, достигая последнего
// обнуляется, а y увеличивается
x = 0;
y++;
}
// x и y должны лишь обеспечивать проход по квадратам
for (int j = 0; j < 4; j++) {
matrix[size*y+j][size*x+j] = tempMatrix[size*y+j][size*x+j]; // главная диагональ квадратов 4х4
matrix[size*y+j][size*x+size-1-j] = tempMatrix[size*y+j][size*x+size-1-j]; // побочная диагональ
}
x++;
}
return matrix;
}
}
Java-da "Sehrli Meydan" yaratmaq
N nizamlı sehrli kvadrat 1, 2, 3, ..., n^2 ədədlərindən ibarət nxn ölçülü kvadrat matrisadır ki, hər bir sütun, hər sətir və iki böyük diaqonalın hər biri üçün cəmlər bərabər olsun. . Yadıma düşən ilk şey Sudoku oldu :) Başa düşməyənlər üçün Vikipediyadan link . Öz doldurma alqoritmlərimi yaratmağı sınaqdan keçirdikdən sonra başqa insanların köməyi olmadan bunu edə bilməyəcəyim qənaətinə gəldim. Buna görə də, onlarla keçiddən keçdikdən sonra ümumilikdə “n” ölçüsünün istənilən matrisinin doldurulmasını həyata keçirən 3 alqoritm tətbiq etdim. Kodun əvvəlində aşağıda istifadə olunacaq üsullarla bağlı şərhləri tapa bilərsiniz. Alqoritmlərə və digər (faydalı?) şərhlərə keçidlər müvafiq metodların mətnində tapıla bilər. Mən Telegramdayam: @sergey3ts Və Linkedin, əlbəttə (Özünüzü əlavə edin, bu mənim üçün vacibdir :)
GO TO FULL VERSION