JavaRush /Java блогу /Random-KY /Java жөнүндө сиз билбеген 10 нерсе
minuteman
Деңгээл

Java жөнүндө сиз билбеген 10 нерсе

Группада жарыяланган
Ошентип, сиз жакында Java менен иштей баштадыңызбы? Эсиңиздеби, ал "Эмен" деп аталып, an objectиге ориентация дагы эле актуалдуу тема болуп турганда, C++ эли Javaда эч кандай мүмкүнчүлүк жок деп ойлогон, ал тургай апплеттерди эч ким укпаган кезде? Мен сиз төмөнкү нерселердин жарымын билбейсиз деп ойлойм. Аптаны Javaнын ички иштеши тууралуу сонун сюрприздер менен баштайлы. Java жөнүндө сиз билбеген 10 нерсе - 11. Текшерилген өзгөчө нерсе жок. Баардыгы туура! JVM мындай нерсе жөнүндө эч кандай түшүнүгү жок, бир гана Java тor бар. Бүгүнкү күндө бардыгы текшерилген өзгөчөлүктөр ката болгонуна макул. Брюс Эккел Прагадагы GeeCONдагы акыркы баяндамасында айткандай, Java текшерилген өзгөчөлүктү колдонбогондон бери башка тилде жок, жада калса Java 8 дагы аларды жаңы Streams API'де камтыbyte (бул сиздин ламбдаларыңыз IO же JDBC колдонгондо бир аз ыңгайсыздык жаратышы мүмкүн). JVM мындай нерсени билбестигин далилдегиңиз келеби? Төмөнкү codeду колдонуп көрүңүз: Бул компиляция гана эмес, SQLException да ыргытат, бул үчүн Lombok's @SneakyThrows колдонуунун кереги жок. 2. Сиз кайтаруу түрлөрү боюнча гана айырмаланган ашыкча жүктөлгөн ыкмаларга ээ болушуңуз мүмкүнpublic class Test { // No throws clause here public static void main(String[] args) { doThrow(new SQLException()); } static void doThrow(Exception e) { Test. doThrow0(e); } @SuppressWarnings("unchecked") static void doThrow0(Exception e) throws E { throw (E) e; } } Это не откомпorруется, верно? class Test { Object x() { return "abc"; } String x() { return "123"; } } Верно. Язык Java не позволяет одновременно двум методам быть эквивалентно переопределенными в пределах одного класса, не обращая внимания на их отличая в throws либо return типах. Но подождите minutesку. Проверьте еще раз documentацию по Class.getMethod(String, Class…). Там написано: Отметьте, что, возможно, есть более одного соответствующего метода в классе, потому что, пока язык Java запрещает множество методов с одинаковой сигнатурой но разными возвращаемыми типами, виртуальная машина Java этого не делает. Эта гибкость в виртуальной машине может использоваться для реализации различных функций языка. Например, ковариантные возвраты могут осуществляться с bridge методами; bridge метод и переопределенный метод, имели бы одинаковую сигнатуру но разные возвращаемые типы. Ничего себе, да это имеет смысл. На самом деле это довольно много что происходит, когда вы пишете следующее: abstract class Parent { abstract T x(); } class Child extends Parent { @Override String x() { return "abc"; } } Посмотрите на сгенерированный byte code: // Method descriptor #15 ()Ljava/lang/String; // Stack: 1, Locals: 1 java.lang.String x(); 0 ldc [16] 2 areturn Line numbers: [pc: 0, line: 7] Local variable table: [pc: 0, pc: 3] local: this index: 0 type: Child // Method descriptor #18 ()Ljava/lang/Object; // Stack: 1, Locals: 1 bridge synthetic java.lang.Object x(); 0 aload_0 [this] 1 invokevirtual Child.x() : java.lang.String [19] 4 areturn Line numbers: [pc: 0, line: 1] Итак, t на самом деле an object в byte codeе. Это хорошо понимается. Синтетический bridge метод на самом деле генерируется компилятором потому что тип возвращаемого значения Parent.x() можно ожидать на определенных участках вызовов. Добавление generics без таких bridge методов перестанет быть возможным в двоичном представлении. Итак, изменения в JVM чтобы позволить такую функцию произвело меньше боли (которая также позволяет ковариантное переопределение метода в качестве побочного эффекта…) По умному правда? 3. Все следующее – двумерные массивы. class Test { int[][] a() { return new int[0][]; } int[] b() [] { return new int[0][]; } int c() [][] { return new int[0][]; } } Это на самом деле так. Даже если ваш умственный анализатор, не может сразу понять возвращаемый тип из описанных выше способов, все они одинаковы! Как и следующий кусок codeа. class Test { int[][] a = {{}}; int[] b[] = {{}}; int c[][] = {{}}; } Вы думаете, что это безумие? Количество возможностей написать тоже просто взрывает воображение! @Target(ElementType.TYPE_USE) @interface Crazy {} class Test { @Crazy int[][] a1 = {{}}; int @Crazy [][] a2 = {{}}; int[] @Crazy [] a3 = {{}}; @Crazy int[] b1[] = {{}}; int @Crazy [] b2[] = {{}}; int[] b3 @Crazy [] = {{}}; @Crazy int c1[][] = {{}}; int c2 @Crazy [][] = {{}}; int c3[] @Crazy [] = {{}}; } Type annotation. Устройство загадочность которого уступает только его мощи. Или другими словами: Когда я делаю последний коммит How раз перед моим 4-х недельным отпуском. Java жөнүндө сиз билбеген 10 нерсе - 2 Я разрешаю вам пользоваться любым понравившимся вам способом. 4. Вы не получите условное выражение Итак, вы думали, что уже знаете все про условные выражения, когда начали их использовать? Позвольте вас огорчить – вы ошибались. Большинство из вас подумает что следующие два примера эквивалентны: Object o1 = true ? new Integer(1) : new Double(2.0); эквивалентно этому? Object o2; if (true) o2 = new Integer(1); else o2 = new Double(2.0); Нет. Давайте используем быстрый тест System.out.println(o1); System.out.println(o2); Программа выведет следующее: 1.0 1 Да! Условный оператор будет осуществлять приведение типов, если понадобится. Поскольку в ином случае вы ожидали бы что программа бросит NullPointerException? Integer i = new Integer(1); if (i.equals(1)) i = null; Double d = new Double(2.0); Object o = true ? i : d; // NullPointerException! System.out.println(o); 5. Вы также не получите составной оператор назначения. Изворотливости достаточно? Давайте рассмотрим следующие два фрагмента codeа: i += j; i = i + j; Интуитивно, они должны быть равняться правда? Но знаете что – они разные. Спецификация JLS говорит: Составное выражение типа Е1 ор = Е2 эквивалентно Е1 = (Т) ((Е1) ор (Е2)), где Т это тип Е1, за исключение что Е1 вычисляется только один раз. Хороший пример это использовать *= or /= : byte b = 10; b *= 5.7; System.out.println(b); // prints 57 or: byte b = 100; b /= 2.5; System.out.println(b); // prints 40 or: char ch = '0'; ch *= 1.1; System.out.println(ch); // prints '4' or: char ch = 'A'; ch *= 1.5; System.out.println(ch); // prints 'a' Итак, это до сих полезный инструмент? 6. Случайные целочисленные числа Теперь более трудное задание. Не читайте решение. Посмотрите сможете ли вы найти ответ самостоятельно. Когда я запущу следующую программу: for (int i = 0; i < 10; i++) { System.out.println((Integer) i); } иногда я получаю следующий вывод: 92 221 45 48 236 183 39 193 33 84 Но How такое вообще возможно? Ок, ответ в кроется в переопределении JDK кеша Integer через рефлексию, и затем в использовании auto-boxing и auto-unboxing. Не делайте этого без разрешения взрослых! Или другими словами: Java жөнүндө сиз билбеген 10 нерсе - 3 7. GOTO Одно из моих самых любимых. У Java есть GOTO! Напишите это: int goto = 1; и вы получите это: Test.java:44: error: expected int goto = 1; ^ Это потому что goto это неиспользуемое зарезервированное слово, просто на всякий случай… Но это не самая захватывающая часть. Самое интересное то что вы можете включить goto в паре с break, continue и помеченных блоков: Прыжки вперед label: { // do stuff if (check) break label; // do more stuff } В byte codeе: 2 iload_1 [check] 3 ifeq 6 // Jumping forward 6 .. Прыжки назад label: do { // do stuff if (check) continue label; // do more stuff break label; } while(true); В byte codeе: 2 iload_1 [check] 3 ifeq 9 6 goto 2 // Jumping backward 9 .. 8. У Java есть псевдонимы типов В других языках (например Ceylon), мы можем определять псевдонимы типов очень легко: interface People => Set ; Класс People здесь построен таким образом, что может взаимозаменяться множеством Set : People? p1 = null; Set ? p2 = p1; People? p3 = p2; В Java мы не можем просто так определить псевдоним на верхнем уровне. Но мы можем сделать так для потребностей класса либо метода. Давайте предположим что нас не устраивают такие имена How Integer, Long и т.д. и мы хотим имена по короче: I и L. Да легко: class Test { void x(I i, L l) { System.out.println( i.intValue() + ", " + l.longValue() ); } } В примере выше, Integer преобразован в I для видимости класса Test в то время How Long преобразован в L для нужд метода х(). Теперь мы можем вызвать этот метод следующим образом: new Test().x(1, 2L); Конечно эту технику не следует воспринимать всерьез. В данном случае Integer и Long final типы, что означает что I и L – эффективные преобразования (почти, преобразование идет только в одну сторону). Если бы мы решor использовать non-final типы (к примеру Object), тогда мы могли бы обойтись обычными дженериками. Поигрались немного и хватит. Давай перейдем к чему-то по настоящему интересному. 9. Некоторые отношения типов неразрешимы! Хорошо, сейчас будет действительно интересно, так что возьмите чашку концентрированного кофе и давайте рассмотрим следующие два типа: // A helper type. You could also just use List interface Type {} class C implements Type > {} class D

implements Type >>> {} Ошентип, C жана D эмнени билдирет? Кандайдыр бир мааниде алар java.lang.Enum рекурсиясына окшош рекурсивдүү. Карап көрөлү: Жогорудагы мүнөздөмөлөрдү эске алуу менен, энумдун иш жүзүндө аткарылышы жөн гана синтаксистик кант: Ушуну эске алып, эки түрүбүзгө кайрылып көрөлү. Төмөнкү code түзүлөбү? Татаал суроо... жана ал чындыгында чечилбей жатабы? C типтин бир түрүбү ? Муну Eclipse же Idea программасында түзүп көрүңүз, алар сизге эмне деп ойлошот. Аны агызып салыңыз... Javaдагы кээ бир типтеги мамилелерди чечүүгө мүмкүн эмес! 10. Type Intersection Java тorнин түрү кесorши деп аталган абдан кызыктуу өзгөчөлүгү бар. Сиз чындыгында эки типтин кесorши болгон (жалпы) түрүн жарыялай аласыз. Мисалы: Сыноо классынын инстанциялары менен байланыштырган T ыңгайлаштырылган түр параметри Сериялаштырылуучу жана Клондолуучу интерфейстерди да камтышы керек. Мисалы, Сапты чектөө мүмкүн эмес, бирок Дата болот: Бул функция Java8де бир нече жолу колдонулат, мында типтерди чыгара аласыз. Бул кантип жардам берет? Дээрлик эч нерсе жок, бирок сиз ламбда туюнтмаңызды керектүү түргө салгыңыз келсе, анда башка жол жок. Методуңузда ушундай жинди чектөө бар дейли: Сиз Runnable каалайсыз, ал ошол эле учурда Сериялаштырылуучу, эгер сиз аны башка жерде аткарып, натыйжаны тармак аркылуу жөнөткүңүз келсе гана. Ламбда жана сериализация бир аз иронияны кошот. Эгер анын максаттуу түрү жана аргументтери сериялаштырылса, ламбда туюнтмаңызды сериялаштыра аласыз. Бирок бул чын болсо да, алар Serializable интерфейсин автоматтык түрдө иштетпейт. Аларды бул түргө өзүңүз алып келишиңиз керек. Бирок сиз Serializable режимине гана чыгарганда: анда ламбда мындан ары Runnable болбой калат, андыктан аларды эки түргө тең чыгарыңыз: Анан акырында: public abstract class Enum > { ... } // This enum MyEnum {} // Is really just sugar for this class MyEnum extends Enum { ... } class Test { Type c = new C(); Type> d = new D (); } Step 0) C Step 1) Type > >? Step 0) D > Step 1) Type >>> > Step 2) D >> Step 3) List >> > Step 4) D > >> Step . . . (expand forever) class Test { } // Doesn't compile Test s = null; // Compiles Test d = null; void execute(T t) {} execute((Serializable) (() -> {}));execute((Runnable & Serializable) (() -> {}));

Java сырдуу болгону менен күчтүү.

Комментарийлер
TO VIEW ALL COMMENTS OR TO MAKE A COMMENT,
GO TO FULL VERSION