JavaRush /جاوا بلاگ /Random-SD /جاوا ۾ "جادو اسڪوائر" ٺاهڻ

جاوا ۾ "جادو اسڪوائر" ٺاهڻ

گروپ ۾ شايع ٿيل
آرڊر n جو جادو چورس nxn سائيز جو هڪ چورس ميٽرڪس آهي، جيڪو انگن 1، 2، 3، ...، n^2 تي مشتمل آهي ته جيئن هر ڪالمن، هر قطار ۽ هر هڪ ٻن وڏن اخترن لاءِ رقمون برابر هجن. . پهرين شيء جيڪا مون کي ياد آئي سوڊوڪو :) جاوا ۾ "جادو اسڪوائر" ٺاهڻ - 1وڪيپيڊيا کان لنڪ ، انهن لاء جيڪي نٿا سمجهن. تجربا ڪرڻ کان پوءِ پنهنجو فلنگ الگورٿم ٺاهڻ سان، مان ان نتيجي تي پهتو آهيان ته مان ٻين ماڻهن جي مدد کان سواءِ نه ٿو ڪري سگهان. تنهن ڪري، درجن جي لنڪ ذريعي وڃڻ کان پوء، مون 3 الگورتھم لاڳو ڪيا، جيڪي مجموعي طور تي "n" طول و عرض جي ڪنهن به ميٽرڪس کي ڀرڻ تي عمل ڪن ٿا. ڪوڊ جي شروعات ۾ توھان ڳولي سگھوٿا رايا انھن طريقن تي جيڪي ھيٺ ڏنل استعمال ڪيا ويندا. algorithms ۽ ٻين (مفيد؟) تبصرن جا لنڪ لاڳاپيل طريقن جي جسم ۾ ڳولهي سگهجن ٿا. مان ٽيليگرام تي آهيان: @sergey3ts ۽ Linkedin، يقينا (پنهنجو پاڻ کي شامل ڪريو، اهو مون لاء اهم آهي :)
// magicSquareOfOddOrder(int n);       метод для n нечетной размерности (3, 7, 9, и тд)
 // magicSquareOfEvenOddOrder(int n);   метод для n четно-нечетной размерности (n кратно 2 но не крастно 4)
 // magicSquareOfEvenOddOrder(int n);   метод для n четн-четной размерности (n кратно и 2 и 4);
 // magicSquare(int n);                 общий метод, который определяет кратность n и вызывает соотв. метод

 // Вспомогательные методы
 // standardMatrixFillingAscending(n); заполняет матрицу от 1 по возростанию
 // standardMatrixFillingDescending(n); заполняет матрицу от n*n по убыванию

 // Извиняюсь за косяки в codeе (непонятные переменные(возможно(нет(да)))) :)
public class MatrixSolution16 {
    public static void main(String[] args) {
        magicSquare(6);
    }
   public static int [][] magicSquare(int n) {
        if (n % 2 !=0) return magicSquareOfOddOrder(n);             // метод для n нечетной размерности (3, 7, 9, и тд)
        else if (n % 4 != 0) return magicSquareOfEvenOddOrder(n);   // метод для n четно-нечетной размерности (n кратно 2 но не кратно 4)
        return magicSquareOfEvenOddOrder(n);                        // метод для n четн-четной размерности (n кратно и 2 и 4);
    }
   private static int[][] magicSquareOfOddOrder(int n) {
        // "Сиамский метод" - один из самых просты для восприятия
        // https://ru.xcv.wiki/wiki/Siamese_method
        // Оставлю без комментариев (gif по ссылке наглядно показывает How он работает)
        // code не сложный
        int[][] matrix = new int[n][n];
        for (int i = 0; i < n; i++) {
            Arrays.fill(matrix[i], 0);
        }
        int count = 1, y = 0, x = matrix.length/2;
        while (true){
            matrix[y][x] = count;

            count++;
            if (((y == 0) && (x >= n-1)) && (matrix[n-1][0] != 0)){
                y++;
            }
            else {
                y--;
                if (y < 0) {
                    y = n - 1;
                }
                x++;
                if (x == n) {
                    x = 0;
                }
                if(matrix[y][x]!=0){
                    y+=2;
                    x--;
                }
            }

            if(count==n*n+1) break;
        }
        return matrix;
    }
   private static int[][] magicSquareOfEvenOddOrder(int n) {
        // Метод "анонима" спасибо человеку, который его придумал
        // Вот link на подробное описание метода http://www.klassikpoez.narod.ru/mojmetod.htm
        // Оставлю этот code без комментариев уж очень он большой
        // Надеюсь прочитав описание метода сможете понять(or нет?)
        int half = n/2;

        int[][] matrix = new int[n][n];
        int[][] tempMatrix;
        tempMatrix = magicSquareOfOddOrder(half);

        // 1/4 матрицы
        for (int i = 0; i < half; i++) {
            for (int j = 0; j < half; j++) {
                matrix[i][j] = tempMatrix[i][j];
            }
        }
        // 2/4 матрицы
        for (int i = 0; i < half; i++) {
            for (int j = half; j < n; j++) {
                int x = j-half;
                matrix[i][j] = (tempMatrix[i][x]+2*half*half);
            }
        }
        // 3/4 матрицы
        for (int i = half; i < n; i++) {
            for (int j = 0; j < half; j++) {
                int x = i-half;

                matrix[i][j] = (tempMatrix[x][j]+3*half*half);
            }
        }
        // 4/4 матрицы
        for (int i = half; i < n; i++) {
            for (int j = half; j < n; j++) {
                int x = i-half, y = j-half;
                matrix[i][j] = (tempMatrix[x][y]+half*half);
            }
        }
        int move = 0;
        for (int i = 6; i < n; i++) {
            if((i%4!=0)&&(i%2==0)) move++;
        }
        for (int j = matrix.length/2-move; j <= matrix.length/2+move-1; j++) {
            for (int i = 0; i < tempMatrix.length; i++) {

                int key = matrix[i][j];
                matrix[i][j] = matrix[half+i][j];
                matrix[half+i][j] = key;
            }
        }
        for (int j = 0; j <= 1; j++) {
            if (j == 0) {
                int key = matrix[0][0];
                matrix[0][0] = matrix[half][0];
                matrix[half][0] = key;
            }
            if (j == 1) {
                int key = matrix[half - 1][0];
                matrix[half - 1][0] = matrix[n - 1][0];
                matrix[n - 1][0] = key;
            }
        }
        for (int j = half+1; j < n-1; j++) {
            for (int i = 1; i < half-1; i++) {
                int key = matrix[i][1];
                matrix[i][1] = matrix[half+i][1];
                matrix[half+i][1] = key;
            }
        }
        return matrix;
    }
    private static int[][] evenMatrixSquare(int n){
        // Метод Раус-Болла хорошое описание нашел тут:
        // https://rep.bntu.by/bitstream/handle/data/62327/Magicheskie_kvadraty.pdf?sequence=1&isAllowed=y
        // Страница 8, 9
        int[][] matrix = WorkWithMatrix.standardMatrixFillingAscending(n);
        int[][] tempMatrix = WorkWithMatrix.standardMatrixFillingDescending(n);

        int size = 4;    // Размерность каждого квадрата (4х4 тафтология)
                         // можно заменить простой цифрой
        int x = 0;       // x, y - движение по кадратам (посмотрите How изменяются в ходе программы)
        int y = 0;
        for (int i = 0; i < (n*n/16); i++) {                // Смотрим сколько квадратов 4х4 помещается в матрице nxn
            if (x == (int)Math.sqrt(n*n/16)) {              // x, y переменные для движения по квадратам 4х4
                                                            // х проходит по первому ряду квадратов, достигая последнего
                                                            // обнуляется, а y увеличивается
                x = 0;
                y++;
            }
            // x и y должны лишь обеспечивать проход по квадратам
            for (int j = 0; j < 4; j++) {
                matrix[size*y+j][size*x+j] = tempMatrix[size*y+j][size*x+j];  // главная диагональ квадратов 4х4
                matrix[size*y+j][size*x+size-1-j] = tempMatrix[size*y+j][size*x+size-1-j]; // побочная диагональ
            }
            x++;
        }
        return matrix;
    }
}
تبصرا
TO VIEW ALL COMMENTS OR TO MAKE A COMMENT,
GO TO FULL VERSION