JavaRush /جاوا بلاگ /Random-UR /Уровни языков программирования

Уровни языков программирования

گروپ میں شائع ہوا۔

Введение

Какие бывают языки программирования? What за концепции в них заложены? Как они развивались? В данной статье рассмотрим виды языков программирования основываясь на так называемых уровнях — от машинных codeов (низкий уровень, приближённый к компьютерному "железу") до таких языков, How Java or С# (высокий уровень). Чем меньше преобразований пройдёт текстовый листинг программы по пути превращения в набор нулей и единичек – тем ниже уровень.
Уровни языков программирования - 1
Далее мы рассмотрим:
  1. Языки низкого уровня (машинные codeы и ассемблер)
  2. Средний уровень ( C, Фортран …. )
  3. Высокий уровень (C++, Java, Python, Ruby, JavaScript ...)
Уровень также характеризует насколько подробно нужно детализировать листинг будущей программы для воплощения реализации. Насколько этот процесс прост для человека. Не стоит считать уровень языка однозначным показателем его возможностей. Язык программирования – это инструмент, который эффективен в одной области и менее полезен в других. И столяр, и плотник работают с деревом. У первого основной инструмент – набор стамесок, у второго – топор. Однако резной шкаф изящнее сделает столяр, а дом быстрее поставит плотник. Хотя каждый и способен выполнить работу другого, но сделает это гораздо менее эффективно. Различные данные в компьютере представлены в виде наборов нулей и единиц. Управляющие команды для её обработки – те же данные, содержащие внутри себя инструкции, которые определяют местоположение необходимой информации и способ модификации.

Машинные языки (Самый низкий уровень)

Нам придётся совершить краткий визит из Software области в Hardware. Рассмотрим в упрощенном виде. Процессор – основной «мозг» компьютера. Материнская плата, на которой он установлен, содержит контроллеры, служащие для взаимодействия с прочими устройствами через шины (каналы данных для связи).
Уровни языков программирования - 2
Некоторые работают с большой speedю (красные стрелки): процессор черпает из памяти команды и манипулирует данными, видеокарта – особенно в 3D играх, потребляет огромные объёмы текстур, фигур, координат пикселей и прочих an objectов для построения изображения на экране монитора. Другим (в силу ограничения скорости обмена информацией) столь высокие показатели и не нужны. Разнообразные внутренние и внешние устройства подключены на схеме зелёными стрелками.

Внутренний мир процессора

Все команды процессора поступают из памяти на выполнение в двоичном виде. Формат, количество, подмножество инструкций зависят от его архитектуры. Большинство из них несовместимо друг с другом и следуют разным идеологиям. А также вид команды сильно зависит от режима (8/16/32… разрядность) и источника данных (память, регистр, стек…), с которыми работает процессор. Одно и то же действие может быть представлено различными инструкциями. Процессор имеет команды сложения двух операндов (ADD X,Y) и прибавления единицы к указанному (INC X). Добавление тройки к операнду можно выполнить How ADD X,3 or троекратно вызвав INC X. И, в отношении разных процессоров, нельзя предсказать Howой из этих способов будет оптимальным по скорости or объёму занимаемой памяти. Для удобства двоичную информацию записывают в 16-ричном виде. Рассмотрим часть привычной программы (язык C, синтаксис которого сходный с Java)

int func() {
    int i = getData("7") ;
    return ++i;
   ...
}
Код, реализующий те же действия в виде последовательности инструкций для процессора: ... 48 83 ec 08 bf bc 05 20 00 31 c0 e8 e8 fe ff ff 48 83 c4 08 83 c0 01 ... Вот так, собственно и выглядит низкоуровневый язык программирования для процессора intel. Фрагмент, вызывающий метод с аргументом и возвращающий увеличенный на единицу результат. Это и есть машинный язык (code), который передается непосредственно сразу, без преобразований, на исполнение процессору. Плюсы:
  • Мы fully хозяева положения, имеем самые широкие возможности использования процессора и аппаратуры компьютера.
  • Для нас доступны все варианты организации и оптимизации codeа.
Минусы:
  • Необходимо обладать обширными знаниями по функционированию процессоров и учитывать большое количество аппаратных факторов при выполнении codeа.
  • Creation программ чуть более сложных чем приведенный пример приводит к резким увеличениям затрат времени по написанию codeа и его отладку.
  • Платформозависимость: программа, созданная для одного процессора, How правило, не будет функционировать на других. Возможно, и для данного процессора, в остальных режимах его работы, потребуется редактирование codeа.
Машинные codeы широко использовались на заре появления компьютеров, других способов программирования в эпоху пионеров ЭВМ не было. В данное время ими изредка пользуются инженера в области микроэлектроники при разработке or низкоуровневом тестировании процессоров.

Язык ассемблера (низкий уровень)

В отличие от компьютера мы с вами лучше воспринимаем информацию в текстовом/смысловом, а не цифровом виде. Вы с легкостью назовете полсотни имён контактов в вашем смартфоне, но вряд ли сможете наизусть написать соответствующие им номера телефонов. Аналогично и с программированием. На лестнице типов мы поднимемся выше, сделав три основных шага:
  • Сопоставим группам цифровых инструкций процессора, выполняющих соответствующие действия, одну символьную команду.
  • Выделим аргументы инструкций процессора отдельно.
  • Введем возможность именовать области памяти, переменные, местоположение отдельных команд.
Сравним фрагменты прошлой программы в машинных codeах (по центру) и на языке ассемблера (справа):

2004b0     48 83 ec 08      sub    $0x8,%rsp
2004b4     bf bc 05 20 00   mov    $0x2005bc,%edi
2004b9     31 c0            xor    %eax,%eax
2004bb     e8 e8 fe ff ff   callq  getData
2004c0     48 83 c4 08      add    $0x8,%rsp
2004c4     83 c0 01         add    $0x1,%eax
Как видим, процесс написания программы упростился: нет необходимости пользоваться справочниками формирования цифровых значений команд, рассчитывать длины переходов, распределение данных в памяти по её ячейкам и иные особенности процессора. Мы описываем нужное действие из набора символьных команд и необходимых для логики из выполнения аргументов, а далее программа-транслятор переводит текстовый файл на понятный процессору набор нулей и единиц. Плюсы:
  • Процесс написания и модификации codeа упростился.
  • Сохранился контроль ко всем ресурсам аппаратуры.
  • Относительно легче переносить программу на другие платформы, но требуется их модификация в зависимости от аппаратной совместимости.
Минусы:
  • Ассемблер относится к низкоуровневым языкам программирования. Creation даже небольших участков codeа затруднено. К тому же также необходимо учитывать специфику работы аппаратуры.
  • Платформозависимость.
Самый популярный демонстрационный Java пример:

public static void main(String[] args) {
    System.out.println("Hello World!");
}
будет выглядеть (NASM синтаксис, с использованием Windows API и kernel32.lib) следующим образом:


        global _main
	extern  _GetStdHandle@4
	extern  _WriteFile@20
	extern  _ExitProcess@4
 
	section .text
_main:
	; DWORD  bytes;	
	mov 	ebp, esp
	sub 	esp, 4
 
	; hStdOut = GetstdHandle( STD_OUTPUT_HANDLE)
	push	-11
	call	_GetStdHandle@4
	mov 	ebx, eax	
 
	; WriteFile( hstdOut, message, length(message), &bytes, 0);
    push	0
	lea 	eax, [ebp-4]
	push	eax
	push	(message_end - message)
	push	message
	push	ebx
	call	_WriteFile@20
 
	; ExitProcess(0)
	push	0
	call	_ExitProcess@4
 
	; never here
	hlt
message:
	db  	'Hello, World', 10
message_end:
Как и машинные codeы, ассемблер чаще используется инженерами и системными программистами. На нём пишут аппаратно-зависимые части ядра операционных систем, критические по времени or особенностям реализации драйвера различных периферийных устройств. Но в последнее время к нему прибегают всё реже и реже, так How его применение сильно сужает переносимость программ на другие платформы. Иногда используют процесс дизассемблирования – создают ассемблерный листинг программы из цифровых codeов для разбора логики выполнения небольших фрагментов. В редких случаях, если первоначальный высокоуровневый code недоступен: анализ вирусов для борьбы с ними or потере исходного текста. Язык ассемблера причисляют к первому/второму поколению (мы не будем рассматривать отдельно псевдоcodeы до возникновения ассемблера и их отличие от символьных команд). Хотелось бы выделить использование ассемблера в Demo Scene (демо-сцена): сплав искусства, математики и низкоуровневого codeирования, воплощающие художественные замыслы своих создателей в виде программ, генерирующих видеоклипы при ограничениях в ресурсах. Часто общий размер file программы и данных не должен превышать 256 byte (также популярен и формат в 4/64 килоbyteа). Вот пример 4 Кб программы:

Языки группы C/Фортран (средний/высокий уровень)

С развитием возможностей вычислительной техники объём функциональности и сроки реализации codeа на ассемблере уже не устраивали. Затраты для написания, тестирования и сопровождения программ росли на порядок быстрее их возможностей. Необходимо было снизить требования от программиста в плане знаний функционирования аппаратуры, дать ему инструмент, позволяющий писать на языках, приближенных к человеческой логике. Перейти к новому уровню типов языков программирования. Предоставить возможность разбивать на разнообразные модули с дальнейшим последовательным вызовом (парадигма proceduresного программирования), предоставить различные типы данных с возможностью их конструирования и т. п. Дополнительно эти меры привнесли улучшенную переносимость codeа на другие платформы, более комфортную организацию командной работы. Одним из первых языков, поддерживающий всё вышеперечисленное был разработанный в 50-е годы прошлого века Фортран. Возможность создавать в текстовом виде с описанием логики выполнения используя циклы, ветвления, подпрограммы и оперируя массивами и представляя данные в виде вещественных, целых и комплексных чисел приводила инженеров и учёных в восторг. За короткое время были созданы научные «фреймворки» и библиотеки. Всё это и стало следствием того, что Фортран и поныне имеет актуальность, пусть и в узкой научной среде, и развивается, так How багаж наработок очень велик, одна только библиотека IMSL активно развивается с 1970 (!) года, много ли вспомните подобных актуальных software-старожилов? Другая ветка развития языков этого уровня – C. Если Фортран стал инструментом учёных, то C создавался в помощь программистам, создающим прикладное ПО: операционные системы, драйвера и т. д. Язык позволяет вручную управлять распределением памяти, даёт прямой доступ к аппаратным ресурсам. C-программистам приходится контролировать низкоуровневые сущности, поэтому многие придерживаются мнения, что язык C – усовершенствованный ассемблер и его часто называют языком «среднего» уровня. Привнеся в ассемблер типизацию данных, элементы proceduresного и модульного программирования язык C и сегодня является одним из основных для системного программирования, чему также способствует и бурное развитие микроэлектроники в последнее время. Всевозможные гаджеты, контроллеры, сетевые и прочие устройства нуждаются в драйверах, реализации протоколов для совместной работы и прочем относительно низкоуровневом ПО для реализации взаимодействия с аппаратурой. Все вышеперечисленное способствует востребованности языка и в настоящее время. Объектно-ориентированные и функциональные принципы получor дальнейшее развитие в виде C++, C#, Java, взяв многое от синтаксиса C. Плюсы:
  • Упрощение процесса создания codeа: введение типов, разбивка на модули, сокращение листинга программ.
  • Прозрачная логика заложенного алгоритма вследствие ухода от машинных codeов к более понятным для человека командам в семантически описательном стиле.
  • Переносимость. Стало достаточно перекомпorровать текст программы для выполнения на другой платформе (возможно, с небольшой модификацией).
  • Скорость откомпorрованных программ.
Минусы:
  • Отсутствие автоматического управления памятью и необходимость постоянного её контроля.
  • Отсутствие реализации концепций an objectно-ориентированного и функционального программирования.

Развитие языков высокого уровня

Высокоуровневые языки программирования, в плане создания ПО, стали всё по большей части удаляться от машинных codeов и реализовывать различные, помимо proceduresного, парадигм программирования. К ним относят также и реализацию an objectно-ориентированных принципов. C++, Java, Python, JavaScript, Ruby… – спектр языков данного типа наиболее популярен и востребован сегодня. Они предоставляют больше возможностей для реализации разнообразного ПО и нельзя однозначно определить «специализацию» каждого из них. Но популярность применения в соответствующих областях обусловлена библиотеками/фреймворками для работы с ними, например: JavaScript – Frontend. Язык был разработан для взаимодействия клиентского веб-браузера с пользователем и удалённым serverом. Наиболее популярные библиотеки: Angular, React и VUE. В данное время относительно активно употребляется и на web и т. п. serverах (backend), особенно популярен Node.js. Ruby – Backend. Применяется для создания скриптов (служебных сервисных файлов) и на web serverах. Основной фреймворк - Ruby On Rails. Python – научная и инженерная сфера (помимо веб-области). Является альтернативой стандартным вычислительным и математическим пакетам (Mathematica, Octave, MatLab…), но имеет привычную семантику языка и большое число библиотек. Имеет много поклонников в области систем машинного обучения, статистики и искусственного интеллекта. Из часто используемых библиотек необходимо упомянуть django, numpy, pandas, tensorflow. С++ – Универсал, эволюционное развитие языка C. Предоставляет возможности функционального и an objectно-ориентированного программирования и не потеряв при этом способность низкоуровневого взаимодействия с аппаратным обеспечением. За счёт чего реализуется производительность и гибкость при создании ПО, но и цена соответствует: высокий порог вхождения за счёт сложной спецификации языка, необходимости самостоятельного контроля за ресурсами при выполнении программы. Многие однопользовательское и системное ПО написано с его применением: модули операционных систем (Windows, Symbian…), игры, редакторы (Adobe Photoshop, Autodesk Maya…), базы данных (MSSQL, Oracle…), проигрыватели (WinAmp…) и т. д. Следует отметить, что современное ПО является сложным продуктом, в разработке которого используется сразу несколько языков программирования и расставлять степень участия каждого из них в общий результат бывает весьма затруднительно.

Дальнейший прогресс

В последнее время набирает популярность и иной вид программирования - функциональное (дальнейшее развитие уровня языка). Здесь уже другой вид абстракции для вычислений – функции, которые берут в качестве аргументов набор функций и возвращают другую. Роль переменных играют те же функции (привычные нам переменные – просто константные выражения, аналогичные final перед объявлением типа в Java). Собственно функция замкнута в своей области видимости, результат её работы зависит только от переданных аргументов. Отсюда вытекают два замечательных свойства:
  • Для тестирования нам необходимы только аргументы функций (результат работы не зависит от внешних переменных и т. п.).
  • Программа в функциональном стиле чудесным образом готова к параллельной работе: последовательные вызовы функций можно пускать в соседних потоках (так How на них не действуют внешние факторы) и им не нужны блокировки (то есть, проблемы синхронизации отсутствуют). Хороший стимул уделить время этой теме, учитывая повальное распространение многоядерных процессоров.
Однако и порог вхождения выше, чем для ООП: для эффективного codeа необходимо строить программу, описывая в виде функций алгоритм выполнения. Но также для чистого функционального стиля неплохо бы знать азы логики и теории категорий. Наиболее популярные – Haskell, Scala, F#. Но не бойтесь, в Java (How и в других современных языках третьего поколения) появorсь элементы функционального программирования и их возможно комбинировать вместе с ООП. Более подробно вы познакомитесь со всеми этими подробностями на онлайн-стажировке JavaRush. Область логического программирования (следующий уровень языков) пока не нашла широкого практического применения в силу малой востребованности. Построение программ требует знание основ дискретной математики, логики предикатов, средств ограничений и других разделов математической логики. Наиболее популярный активный язык – Prolog.

Заключение

В настоящее время самые распространённые – языки ООП. Java, с момента возникновения, всегда находится в топе, обычно в тройке, востребованных языков. Помимо ООП, содержит элементы функционального программирования, и вы можете комбинировать разные стor составления ваших программ. Спектр применения Java весьма широк – это бизнес задачи, реализация веб-serverов (backend), основной язык создания Android-приложений, кроссплатформенные среды программирования и рабочих мест (IDE/АРМ) и моделирования и многое другое. Особенно сильны позиции Java в Enterprise секторе – области корпоративного программного обеспечения, которая требует качественный и долгоживущий code, реализацию самых сложных бизнес-логик.
تبصرے
TO VIEW ALL COMMENTS OR TO MAKE A COMMENT,
GO TO FULL VERSION