JavaRush /Java blogi /Random-UZ /Java haqida siz bilmagan 10 ta narsa
minuteman
Daraja

Java haqida siz bilmagan 10 ta narsa

Guruhda nashr etilgan
Xo'sh, yaqinda Java bilan ishlashni boshladingizmi? Esingizda bo'lsa, u "Eman" deb atalgan, ob'ektga yo'naltirish hali ham dolzarb mavzu bo'lgan, C++ odamlari Java-da hech qanday imkoniyat yo'q deb o'ylashgan va hatto appletlar haqida hech kim eshitmagan bo'lsa? Siz quyidagi narsalarning yarmini ham bilmaysiz deb taxmin qilishim mumkin. Haftani Java-ning ichki ishi haqida ajoyib kutilmagan hodisalar bilan boshlaylik. Java haqida siz bilmagan 10 ta narsa - 11. Tekshirilgan istisno degan narsa yo'q. Hammasi to'g'ri! JVM bunday narsa haqida hech qanday tasavvurga ega emas, faqat Java tilida. Bugun hamma tekshirilgan istisnolar xato ekanligiga rozi. Bryus Ekkel Pragadagi GeeCONda o'zining so'nggi nutqida aytganidek, Java boshqa tilda tekshirilgan istisnolardan foydalanmaydi, hatto Java 8 ham ularni yangi Streams API-da qamrab olmaydi (bu sizning lambdalaringiz IO yoki JDBC-dan foydalanganda biroz noqulaylik tug'dirishi mumkin). JVM bunday narsani bilmasligini isbotlashni xohlaysizmi? Quyidagi kodni sinab ko'ring: Bu nafaqat kompilyatsiya qiladi, balki SQLExceptionni ham chiqaradi, buning uchun Lombok's @SneakyThrows-dan foydalanish shart emas. 2. Sizda faqat qaytarish turlarida farq qiluvchi ortiqcha yuklangan usullar bo'lishi mumkinpublic class Test { // No throws clause here public static void main(String[] args) { doThrow(new SQLException()); } static void doThrow(Exception e) { Test. doThrow0(e); } @SuppressWarnings("unchecked") static void doThrow0(Exception e) throws E { throw (E) e; } } Это не откомпorруется, верно? class Test { Object x() { return "abc"; } String x() { return "123"; } } Верно. Язык Java не позволяет одновременно двум методам быть эквивалентно переопределенными в пределах одного класса, не обращая внимания на их отличая в throws либо return типах. Но подождите minutesку. Проверьте еще раз documentацию по Class.getMethod(String, Class…). Там написано: Отметьте, что, возможно, есть более одного соответствующего метода в классе, потому что, пока язык Java запрещает множество методов с одинаковой сигнатурой но разными возвращаемыми типами, виртуальная машина Java этого не делает. Эта гибкость в виртуальной машине может использоваться для реализации различных функций языка. Например, ковариантные возвраты могут осуществляться с bridge методами; bridge метод и переопределенный метод, имели бы одинаковую сигнатуру но разные возвращаемые типы. Ничего себе, да это имеет смысл. На самом деле это довольно много что происходит, когда вы пишете следующее: abstract class Parent { abstract T x(); } class Child extends Parent { @Override String x() { return "abc"; } } Посмотрите на сгенерированный byte code: // Method descriptor #15 ()Ljava/lang/String; // Stack: 1, Locals: 1 java.lang.String x(); 0 ldc [16] 2 areturn Line numbers: [pc: 0, line: 7] Local variable table: [pc: 0, pc: 3] local: this index: 0 type: Child // Method descriptor #18 ()Ljava/lang/Object; // Stack: 1, Locals: 1 bridge synthetic java.lang.Object x(); 0 aload_0 [this] 1 invokevirtual Child.x() : java.lang.String [19] 4 areturn Line numbers: [pc: 0, line: 1] Итак, t на самом деле an object в byte codeе. Это хорошо понимается. Синтетический bridge метод на самом деле генерируется компилятором потому что тип возвращаемого значения Parent.x() можно ожидать на определенных участках вызовов. Добавление generics без таких bridge методов перестанет быть возможным в двоичном представлении. Итак, изменения в JVM чтобы позволить такую функцию произвело меньше боли (которая также позволяет ковариантное переопределение метода в качестве побочного эффекта…) По умному правда? 3. Все следующее – двумерные массивы. class Test { int[][] a() { return new int[0][]; } int[] b() [] { return new int[0][]; } int c() [][] { return new int[0][]; } } Это на самом деле так. Даже если ваш умственный анализатор, не может сразу понять возвращаемый тип из описанных выше способов, все они одинаковы! Как и следующий кусок codeа. class Test { int[][] a = {{}}; int[] b[] = {{}}; int c[][] = {{}}; } Вы думаете, что это безумие? Количество возможностей написать тоже просто взрывает воображение! @Target(ElementType.TYPE_USE) @interface Crazy {} class Test { @Crazy int[][] a1 = {{}}; int @Crazy [][] a2 = {{}}; int[] @Crazy [] a3 = {{}}; @Crazy int[] b1[] = {{}}; int @Crazy [] b2[] = {{}}; int[] b3 @Crazy [] = {{}}; @Crazy int c1[][] = {{}}; int c2 @Crazy [][] = {{}}; int c3[] @Crazy [] = {{}}; } Type annotation. Устройство загадочность которого уступает только его мощи. Или другими словами: Когда я делаю последний коммит How раз перед моим 4-х недельным отпуском. Java haqida siz bilmagan 10 ta narsa - 2 Я разрешаю вам пользоваться любым понравившимся вам способом. 4. Вы не получите условное выражение Итак, вы думали, что уже знаете все про условные выражения, когда начали их использовать? Позвольте вас огорчить – вы ошибались. Большинство из вас подумает что следующие два примера эквивалентны: Object o1 = true ? new Integer(1) : new Double(2.0); эквивалентно этому? Object o2; if (true) o2 = new Integer(1); else o2 = new Double(2.0); Нет. Давайте используем быстрый тест System.out.println(o1); System.out.println(o2); Программа выведет следующее: 1.0 1 Да! Условный оператор будет осуществлять приведение типов, если понадобится. Поскольку в ином случае вы ожидали бы что программа бросит NullPointerException? Integer i = new Integer(1); if (i.equals(1)) i = null; Double d = new Double(2.0); Object o = true ? i : d; // NullPointerException! System.out.println(o); 5. Вы также не получите составной оператор назначения. Изворотливости достаточно? Давайте рассмотрим следующие два фрагмента codeа: i += j; i = i + j; Интуитивно, они должны быть равняться правда? Но знаете что – они разные. Спецификация JLS говорит: Составное выражение типа Е1 ор = Е2 эквивалентно Е1 = (Т) ((Е1) ор (Е2)), где Т это тип Е1, за исключение что Е1 вычисляется только один раз. Хороший пример это использовать *= or /= : byte b = 10; b *= 5.7; System.out.println(b); // prints 57 or: byte b = 100; b /= 2.5; System.out.println(b); // prints 40 or: char ch = '0'; ch *= 1.1; System.out.println(ch); // prints '4' or: char ch = 'A'; ch *= 1.5; System.out.println(ch); // prints 'a' Итак, это до сих полезный инструмент? 6. Случайные целочисленные числа Теперь более трудное задание. Не читайте решение. Посмотрите сможете ли вы найти ответ самостоятельно. Когда я запущу следующую программу: for (int i = 0; i < 10; i++) { System.out.println((Integer) i); } иногда я получаю следующий вывод: 92 221 45 48 236 183 39 193 33 84 Но How такое вообще возможно? Ок, ответ в кроется в переопределении JDK кеша Integer через рефлексию, и затем в использовании auto-boxing и auto-unboxing. Не делайте этого без разрешения взрослых! Или другими словами: Java haqida siz bilmagan 10 ta narsa - 3 7. GOTO Одно из моих самых любимых. У Java есть GOTO! Напишите это: int goto = 1; и вы получите это: Test.java:44: error: expected int goto = 1; ^ Это потому что goto это неиспользуемое зарезервированное слово, просто на всякий случай… Но это не самая захватывающая часть. Самое интересное то что вы можете включить goto в паре с break, continue и помеченных блоков: Прыжки вперед label: { // do stuff if (check) break label; // do more stuff } В byte codeе: 2 iload_1 [check] 3 ifeq 6 // Jumping forward 6 .. Прыжки назад label: do { // do stuff if (check) continue label; // do more stuff break label; } while(true); В byte codeе: 2 iload_1 [check] 3 ifeq 9 6 goto 2 // Jumping backward 9 .. 8. У Java есть псевдонимы типов В других языках (например Ceylon), мы можем определять псевдонимы типов очень легко: interface People => Set ; Класс People здесь построен таким образом, что может взаимозаменяться множеством Set : People? p1 = null; Set ? p2 = p1; People? p3 = p2; В Java мы не можем просто так определить псевдоним на верхнем уровне. Но мы можем сделать так для потребностей класса либо метода. Давайте предположим что нас не устраивают такие имена How Integer, Long и т.д. и мы хотим имена по короче: I и L. Да легко: class Test { void x(I i, L l) { System.out.println( i.intValue() + ", " + l.longValue() ); } } В примере выше, Integer преобразован в I для видимости класса Test в то время How Long преобразован в L для нужд метода х(). Теперь мы можем вызвать этот метод следующим образом: new Test().x(1, 2L); Конечно эту технику не следует воспринимать всерьез. В данном случае Integer и Long final типы, что означает что I и L – эффективные преобразования (почти, преобразование идет только в одну сторону). Если бы мы решor использовать non-final типы (к примеру Object), тогда мы могли бы обойтись обычными дженериками. Поигрались немного и хватит. Давай перейдем к чему-то по настоящему интересному. 9. Некоторые отношения типов неразрешимы! Хорошо, сейчас будет действительно интересно, так что возьмите чашку концентрированного кофе и давайте рассмотрим следующие два типа: // A helper type. You could also just use List interface Type {} class C implements Type > {} class D

implements Type >>> {} Xo'sh, C va D hatto nimani anglatadi? Qaysidir ma'noda ular java.lang.Enumdagi rekursiyaga o'xshash rekursivdir. O'ylab ko'ring: Yuqoridagi spetsifikatsiyalarni hisobga olgan holda, enumning haqiqiy amalga oshirilishi shunchaki sintaktik shakardir: Shuni yodda tutgan holda, keling, ikkita turimizga qaytaylik. Quyidagi kod kompilyatsiya qilinadimi? Qiyin savol... va u aslida hal etilmayaptimi? C toifaning kichik turimi ? Buni Eclipse yoki Idea-da tuzib ko'ring va ular sizga o'zlarining fikrlarini aytib berishadi. Uni kanalizatsiya orqali yuving... Java-dagi ba'zi turdagi munosabatlarni hal qilib bo'lmaydi! 10. Type Intersection Java-da tur kesishuvi deb ataladigan juda qiziq xususiyat mavjud. Siz aslida ikki turning kesishishi bo'lgan (umumiy) turni e'lon qilishingiz mumkin. Misol uchun: Test klassi misollari bilan bog'langan maxsus turdagi parametr T ham Serializable va Cloneable interfeyslarini o'z ichiga olishi kerak. Misol uchun, Stringni cheklab bo'lmaydi, lekin sana mumkin: Bu xususiyat Java8 da bir nechta qo'llanilishi mumkin, bu erda siz turlarni translatsiya qilishingiz mumkin. Bu qanday yordam beradi? Deyarli hech narsa, lekin agar siz lambda ifodasini kerakli turga kiritmoqchi bo'lsangiz, unda boshqa yo'l yo'q. Aytaylik, sizning usulingizda shunday aqldan ozgan cheklov bor: Siz Runnable-ni bir vaqtning o'zida Serializable bo'lishini xohlaysiz, agar siz uni boshqa joyda bajarib, natijani tarmoq orqali yubormoqchi bo'lsangiz. Lambda va serializatsiya biroz kinoya qo'shadi. Agar maqsad turi va argumentlari seriyali bo'lsa, siz lambda ifodasini ketma-ketlashtirishingiz mumkin. Ammo bu to'g'ri bo'lsa ham, ular Serializable interfeysini avtomatik ravishda yoqmaydi. Siz ularni bu turga o'zingiz olib kelishingiz kerak. Lekin siz faqat Serializable-ga translatsiya qilganingizda: u holda lambda endi Runnable bo'lmaydi, shuning uchun ularni ikkala turga o'tkazing: Va xulosa: public abstract class Enum > { ... } // This enum MyEnum {} // Is really just sugar for this class MyEnum extends Enum { ... } class Test { Type c = new C(); Type> d = new D (); } Step 0) C Step 1) Type > >? Step 0) D > Step 1) Type >>> > Step 2) D >> Step 3) List >> > Step 4) D > >> Step . . . (expand forever) class Test { } // Doesn't compile Test s = null; // Compiles Test d = null; void execute(T t) {} execute((Serializable) (() -> {}));execute((Runnable & Serializable) (() -> {}));

Java sirli bo'lganidek kuchli.

Izohlar
TO VIEW ALL COMMENTS OR TO MAKE A COMMENT,
GO TO FULL VERSION