Введение
Какие бывают языки программирования? Что за концепции в них заложены? Как они развивались? В данной статье рассмотрим виды языков программирования основываясь на так называемых уровнях — от машинных кодов (низкий уровень, приближённый к компьютерному "железу") до таких языков, как Java или С# (высокий уровень). Чем меньше преобразований пройдёт текстовый листинг программы по пути превращения в набор нулей и единичек – тем ниже уровень.Далее мы рассмотрим:
- Языки низкого уровня (машинные коды и ассемблер)
- Средний уровень ( C, Фортран …. )
- Высокий уровень (C++, Java, Python, Ruby, JavaScript ...)
Машинные языки (Самый низкий уровень)
Нам придётся совершить краткий визит из Software области в Hardware. Рассмотрим в упрощенном виде. Процессор – основной «мозг» компьютера. Материнская плата, на которой он установлен, содержит контроллеры, служащие для взаимодействия с прочими устройствами через шины (каналы данных для связи).Некоторые работают с большой скоростью (красные стрелки): процессор черпает из памяти команды и манипулирует данными, видеокарта – особенно в 3D играх, потребляет огромные объёмы текстур, фигур, координат пикселей и прочих объектов для построения изображения на экране монитора.
Другим (в силу ограничения скорости обмена информацией) столь высокие показатели и не нужны. Разнообразные внутренние и внешние устройства подключены на схеме зелёными стрелками.
Внутренний мир процессора
Все команды процессора поступают из памяти на выполнение в двоичном виде. Формат, количество, подмножество инструкций зависят от его архитектуры. Большинство из них несовместимо друг с другом и следуют разным идеологиям. А также вид команды сильно зависит от режима (8/16/32… разрядность) и источника данных (память, регистр, стек…), с которыми работает процессор. Одно и то же действие может быть представлено различными инструкциями. Процессор имеет команды сложения двух операндов (ADD X,Y) и прибавления единицы к указанному (INC X). Добавление тройки к операнду можно выполнить как ADD X,3 или троекратно вызвав INC X. И, в отношении разных процессоров, нельзя предсказать какой из этих способов будет оптимальным по скорости или объёму занимаемой памяти. Для удобства двоичную информацию записывают в 16-ричном виде. Рассмотрим часть привычной программы (язык C, синтаксис которого сходный с Java)
int func() {
int i = getData("7") ;
return ++i;
...
}
Код, реализующий те же действия в виде последовательности инструкций для процессора:
... 48 83 ec 08 bf bc 05 20 00 31 c0 e8 e8 fe ff ff 48 83 c4 08 83 c0 01 ...
Вот так, собственно и выглядит низкоуровневый язык программирования для процессора intel. Фрагмент, вызывающий метод с аргументом и возвращающий увеличенный на единицу результат. Это и есть машинный язык (код), который передается непосредственно сразу, без преобразований, на исполнение процессору.
Плюсы:
- Мы полностью хозяева положения, имеем самые широкие возможности использования процессора и аппаратуры компьютера.
- Для нас доступны все варианты организации и оптимизации кода.
- Необходимо обладать обширными знаниями по функционированию процессоров и учитывать большое количество аппаратных факторов при выполнении кода.
- Создание программ чуть более сложных чем приведенный пример приводит к резким увеличениям затрат времени по написанию кода и его отладку.
- Платформозависимость: программа, созданная для одного процессора, как правило, не будет функционировать на других. Возможно, и для данного процессора, в остальных режимах его работы, потребуется редактирование кода.
Язык ассемблера (низкий уровень)
В отличие от компьютера мы с вами лучше воспринимаем информацию в текстовом/смысловом, а не цифровом виде. Вы с легкостью назовете полсотни имён контактов в вашем смартфоне, но вряд ли сможете наизусть написать соответствующие им номера телефонов. Аналогично и с программированием. На лестнице типов мы поднимемся выше, сделав три основных шага:- Сопоставим группам цифровых инструкций процессора, выполняющих соответствующие действия, одну символьную команду.
- Выделим аргументы инструкций процессора отдельно.
- Введем возможность именовать области памяти, переменные, местоположение отдельных команд.
2004b0 48 83 ec 08 sub $0x8,%rsp
2004b4 bf bc 05 20 00 mov $0x2005bc,%edi
2004b9 31 c0 xor %eax,%eax
2004bb e8 e8 fe ff ff callq getData
2004c0 48 83 c4 08 add $0x8,%rsp
2004c4 83 c0 01 add $0x1,%eax
Как видим, процесс написания программы упростился: нет необходимости пользоваться справочниками формирования цифровых значений команд, рассчитывать длины переходов, распределение данных в памяти по её ячейкам и иные особенности процессора. Мы описываем нужное действие из набора символьных команд и необходимых для логики из выполнения аргументов, а далее программа-транслятор переводит текстовый файл на понятный процессору набор нулей и единиц.
Плюсы:
- Процесс написания и модификации кода упростился.
- Сохранился контроль ко всем ресурсам аппаратуры.
- Относительно легче переносить программу на другие платформы, но требуется их модификация в зависимости от аппаратной совместимости.
- Ассемблер относится к низкоуровневым языкам программирования. Создание даже небольших участков кода затруднено. К тому же также необходимо учитывать специфику работы аппаратуры.
- Платформозависимость.
public static void main(String[] args) {
System.out.println("Hello World!");
}
будет выглядеть (NASM синтаксис, с использованием Windows API и kernel32.lib) следующим образом:
global _main
extern _GetStdHandle@4
extern _WriteFile@20
extern _ExitProcess@4
section .text
_main:
; DWORD bytes;
mov ebp, esp
sub esp, 4
; hStdOut = GetstdHandle( STD_OUTPUT_HANDLE)
push -11
call _GetStdHandle@4
mov ebx, eax
; WriteFile( hstdOut, message, length(message), &bytes, 0);
push 0
lea eax, [ebp-4]
push eax
push (message_end - message)
push message
push ebx
call _WriteFile@20
; ExitProcess(0)
push 0
call _ExitProcess@4
; never here
hlt
message:
db 'Hello, World', 10
message_end:
Как и машинные коды, ассемблер чаще используется инженерами и системными программистами. На нём пишут аппаратно-зависимые части ядра операционных систем, критические по времени или особенностям реализации драйвера различных периферийных устройств. Но в последнее время к нему прибегают всё реже и реже, так как его применение сильно сужает переносимость программ на другие платформы.
Иногда используют процесс дизассемблирования – создают ассемблерный листинг программы из цифровых кодов для разбора логики выполнения небольших фрагментов. В редких случаях, если первоначальный высокоуровневый код недоступен: анализ вирусов для борьбы с ними или потере исходного текста. Язык ассемблера причисляют к первому/второму поколению (мы не будем рассматривать отдельно псевдокоды до возникновения ассемблера и их отличие от символьных команд).
Хотелось бы выделить использование ассемблера в Demo Scene (демо-сцена): сплав искусства, математики и низкоуровневого кодирования, воплощающие художественные замыслы своих создателей в виде программ, генерирующих видеоклипы при ограничениях в ресурсах. Часто общий размер файла программы и данных не должен превышать 256 байт (также популярен и формат в 4/64 килобайта).
Вот пример 4 Кб программы:
Языки группы C/Фортран (средний/высокий уровень)
С развитием возможностей вычислительной техники объём функциональности и сроки реализации кода на ассемблере уже не устраивали. Затраты для написания, тестирования и сопровождения программ росли на порядок быстрее их возможностей. Необходимо было снизить требования от программиста в плане знаний функционирования аппаратуры, дать ему инструмент, позволяющий писать на языках, приближенных к человеческой логике. Перейти к новому уровню типов языков программирования. Предоставить возможность разбивать на разнообразные модули с дальнейшим последовательным вызовом (парадигма процедурного программирования), предоставить различные типы данных с возможностью их конструирования и т. п. Дополнительно эти меры привнесли улучшенную переносимость кода на другие платформы, более комфортную организацию командной работы. Одним из первых языков, поддерживающий всё вышеперечисленное был разработанный в 50-е годы прошлого века Фортран. Возможность создавать в текстовом виде с описанием логики выполнения используя циклы, ветвления, подпрограммы и оперируя массивами и представляя данные в виде вещественных, целых и комплексных чисел приводила инженеров и учёных в восторг. За короткое время были созданы научные «фреймворки» и библиотеки. Всё это и стало следствием того, что Фортран и поныне имеет актуальность, пусть и в узкой научной среде, и развивается, так как багаж наработок очень велик, одна только библиотека IMSL активно развивается с 1970 (!) года, много ли вспомните подобных актуальных software-старожилов? Другая ветка развития языков этого уровня – C. Если Фортран стал инструментом учёных, то C создавался в помощь программистам, создающим прикладное ПО: операционные системы, драйвера и т. д. Язык позволяет вручную управлять распределением памяти, даёт прямой доступ к аппаратным ресурсам. C-программистам приходится контролировать низкоуровневые сущности, поэтому многие придерживаются мнения, что язык C – усовершенствованный ассемблер и его часто называют языком «среднего» уровня. Привнеся в ассемблер типизацию данных, элементы процедурного и модульного программирования язык C и сегодня является одним из основных для системного программирования, чему также способствует и бурное развитие микроэлектроники в последнее время. Всевозможные гаджеты, контроллеры, сетевые и прочие устройства нуждаются в драйверах, реализации протоколов для совместной работы и прочем относительно низкоуровневом ПО для реализации взаимодействия с аппаратурой. Все вышеперечисленное способствует востребованности языка и в настоящее время. Объектно-ориентированные и функциональные принципы получили дальнейшее развитие в виде C++, C#, Java, взяв многое от синтаксиса C. Плюсы:- Упрощение процесса создания кода: введение типов, разбивка на модули, сокращение листинга программ.
- Прозрачная логика заложенного алгоритма вследствие ухода от машинных кодов к более понятным для человека командам в семантически описательном стиле.
- Переносимость. Стало достаточно перекомпилировать текст программы для выполнения на другой платформе (возможно, с небольшой модификацией).
- Скорость откомпилированных программ.
- Отсутствие автоматического управления памятью и необходимость постоянного её контроля.
- Отсутствие реализации концепций объектно-ориентированного и функционального программирования.
Развитие языков высокого уровня
Высокоуровневые языки программирования, в плане создания ПО, стали всё по большей части удаляться от машинных кодов и реализовывать различные, помимо процедурного, парадигм программирования. К ним относят также и реализацию объектно-ориентированных принципов. C++, Java, Python, JavaScript, Ruby… – спектр языков данного типа наиболее популярен и востребован сегодня. Они предоставляют больше возможностей для реализации разнообразного ПО и нельзя однозначно определить «специализацию» каждого из них. Но популярность применения в соответствующих областях обусловлена библиотеками/фреймворками для работы с ними, например: JavaScript – Frontend. Язык был разработан для взаимодействия клиентского веб-браузера с пользователем и удалённым сервером. Наиболее популярные библиотеки: Angular, React и VUE. В данное время относительно активно употребляется и на web и т. п. серверах (backend), особенно популярен Node.js. Ruby – Backend. Применяется для создания скриптов (служебных сервисных файлов) и на web серверах. Основной фреймворк - Ruby On Rails. Python – научная и инженерная сфера (помимо веб-области). Является альтернативой стандартным вычислительным и математическим пакетам (Mathematica, Octave, MatLab…), но имеет привычную семантику языка и большое число библиотек. Имеет много поклонников в области систем машинного обучения, статистики и искусственного интеллекта. Из часто используемых библиотек необходимо упомянуть django, numpy, pandas, tensorflow. С++ – Универсал, эволюционное развитие языка C. Предоставляет возможности функционального и объектно-ориентированного программирования и не потеряв при этом способность низкоуровневого взаимодействия с аппаратным обеспечением. За счёт чего реализуется производительность и гибкость при создании ПО, но и цена соответствует: высокий порог вхождения за счёт сложной спецификации языка, необходимости самостоятельного контроля за ресурсами при выполнении программы. Многие однопользовательское и системное ПО написано с его применением: модули операционных систем (Windows, Symbian…), игры, редакторы (Adobe Photoshop, Autodesk Maya…), базы данных (MSSQL, Oracle…), проигрыватели (WinAmp…) и т. д. Следует отметить, что современное ПО является сложным продуктом, в разработке которого используется сразу несколько языков программирования и расставлять степень участия каждого из них в общий результат бывает весьма затруднительно.Дальнейший прогресс
В последнее время набирает популярность и иной вид программирования - функциональное (дальнейшее развитие уровня языка). Здесь уже другой вид абстракции для вычислений – функции, которые берут в качестве аргументов набор функций и возвращают другую. Роль переменных играют те же функции (привычные нам переменные – просто константные выражения, аналогичные final перед объявлением типа в Java). Собственно функция замкнута в своей области видимости, результат её работы зависит только от переданных аргументов. Отсюда вытекают два замечательных свойства:- Для тестирования нам необходимы только аргументы функций (результат работы не зависит от внешних переменных и т. п.).
- Программа в функциональном стиле чудесным образом готова к параллельной работе: последовательные вызовы функций можно пускать в соседних потоках (так как на них не действуют внешние факторы) и им не нужны блокировки (то есть, проблемы синхронизации отсутствуют). Хороший стимул уделить время этой теме, учитывая повальное распространение многоядерных процессоров.
ПЕРЕЙДИТЕ В ПОЛНУЮ ВЕРСИЮ